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Height-diameter relationships are an important component in yield estimation, stand description, and damage appraisals.
A nonlinear exponential function used extensively in the northwest United States was chosen for bald cypress (Taxodium
distichum (L.) Rich.). Homogeneity and normality of residuals were examined, and the function as well as the mean and
individual prediction confidence bands were plotted. The inclusion of stand basal area as an additional independent variable
provided a better fit to the data. The paper is concluded with a section on construction and use of simple and joint confidence
intervals about the mean and individual predictions from the nonlinear regression.

PARRESOL, B.R. 1992. Baldcypress height-diameter equations and their prediction confidence intervals. Can. J. For. Res.
22 : 1429-1434.

Les relations hauteur-diametre  constituent une composante importante pour l’estimation de la production forestiere,  la
description des peuplements et l’evaluation des dommages. Un modble exponentiel non lineaire frequemment utilise dans le
nord-ouest des Etats-Unis a et6 applique a des mesures effect&es sur le cyprts  chauve (Taxodium distichum (L.) Rich.).
L’homogCnCitC  et la normalit  des residus  sont examinees  et I’equation,  de mCme que les intervalles de confiance pour la
moyenne et les estimes  individuels, sont representees  graphiquement. L’ajout de la surface terriere du peuplement comme
variable independante  assure un meilleur  ajustement du modele aux observations. L’article se termine avec une section portant
sur la construction et I’utilisation des intervalles de confiance pour la moyenne et les predictions individuelles a partir de
regressions non lineaires.

[Traduit par la redaction]
Introduction

Bald cypress (Taxodium distichum (L.) Rich.), extending
across the Coastal Plain from southeastern Texas to southern
Delaware, has slowly regained its importance as a commercial
species. The volume of cypress growing stock on commercial
forest land is estimated to be 5.5 x lo9 ft3 (155.7 x lo6 m3)
(Williston et al. 1980). Recently, tree-volume and stem-
profile functions were developed for second-growth bald
cypress (Hotvedt et al. 1985; Parresol et al. 1987). These
functions used a fixed-height measurement point of 10 ft
(3.0 m) above the ground for diameter as a superior choice
over the variable-height measure called normal diameter, that
is, diameter measured 1.5 ft (0.5 m) above pronounced butt
swelling (Avery and Burkhart 1983). Diameter at 10 ft
(3.0 m) is easily measured with a pole caliper (Fig. 1) such
as described by Ferree (1946). In many survey and timber
cruising operations, tree height is not measured or is mea-
sured only on a small subsample of trees. Therefore, a height-
diameter equation would be a valuable addition to the pre-
diction systems of Hotvedt et al. (1985) and Parresol et al.
(1987). Where trees are damaged, such as occurred from hurri-
cane Hugo in the Carolinas, a height-diameter equation would
aid in estimating losses.

Perhaps more important than the height predictions them-
selves are the variances of the predictions. Too often research
reports, such as those in scientific journals, do not provide
the necessary information for the building of prediction con-
fidence intervals! Yet this information is important to forest
managers, damage appraisers, etc., who have to consider the
potential volume and value involved. Full details and exam-
ples are provided in the section on Application and reliability.

Data
The data are described in Hotvedt et al. (1985). Briefly, the

data consist of 157 sample trees from 26 locations (6 trees
per location except one where a 7th tree was measured) across
the south Delta region of Louisiana (Fig. 2). Trees were
felled, diameter at a fixed height of 10 ft (3.0 m), termed
die,  was measured to the nearest 0.1 in. (0.3 cm), and total
height was measured to the nearest 0.1 ft (0.03 m). In addi-
tion, stand basal area (BA) around each sample tree was
measured using a lo-factor prism. Surrounding trees were
sighted through the prism at normal diameter for deter-
mination of BA. The range of BA was 30 to 300 ft*/acre
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FIG. 1. Forester measuring diameter at 10 ft (3.0 m) on a bald
cypress tree using a pole caliper.

(6.89 to 68.88 m2/ha), with the median being 130 ft2/acre
(29.85 m2/ha).  The distribution of sample trees by dlo  and
height are listed in Table 1.

Height-diameter equation
A scatterplot of height over dlo  (Fig. 3) shows a monotone

increasing curvilinear relationship typical of height-diameter
data. Curtis (1967),  in his work with second-growth Douglas-
fir (Pseudotsuga  menziesii (Mirb.) France) employed the
following log-reciprocal model:

Pl
1nW)  = P O  +  d4.5  +  E

where H is total tree height in feet, d4,5  is tree diameter at
4.5 ft (1.4 m) measured in inches, In  denotes the natural log-
arithm, pi’s  are model parameters, and E is residual error.
This equation possesses an asymptote,  an inflect ion point ,  and
passes through the origin. Curtis suggested two modifications
of the above model. The first was to add a power term to the
independent variable for increased flexibility and the second

FIG. 2. Locations of the 26 bald cypress sample sites in Louisiana.

was to constrain the model to pass through the natural origin
(0, 4.5). For this study the natural origin is (0, lo),  that is,
diameter is measured at 10 ft. Researchers such as Larsen and
Hann (1987) found that the residuals of log-transformed
height-diameter equations are not normally distributed. They
preferred weighted regression over use of the logarithmic
transformation. The result of these modifications is the fol-
lowing model that is nonlinear in the parameters:

[l] H =  C  +  exp(b  +  pldcpz)  +  E

where C is the natural origin constraint and exp is base of the
natural logarithm. Larsen and Hann (1987) and Wang and
Hann (1988) used this model (with C = 4.5 ft) for a variety
of coniferous and hardwood species in Oregon.

Statistics used to examine the appropriateness of the regres-
sion were (i) Bartlett’s X2-test for homogeneity of variance,
(ii) the Kolmogorov D-statistic for normality, (iii) variation
in H explained, referred to as fit index or FI (Schlaegel 198 l),
and (iv) root mean square error for H. For Bartlett’s test, the
residuals were separated into three groups based on values of
the independent variable: dlo  less than 11, dlo from 11 to 16,
and dlo  greater than 16. This breakdown provides variances
calculated on approximately equal-length diameter classes.
Since residuals have a mean of zero, care must be taken to
use the correct critical values in determining significance of the
Kolmogorov test for normality. The appropriate percentage
points for the case of lt known and o2  estimated are given in
Stephens (1974). All tests of hypothesis were made using an
a-level of 0.05.

Upon fitting eq. 1 to the data with nonlinear least squares,
the following function resulted’:

[2] fi = 10 + exp(5.15907 - 2.65144dit.4158g)

‘For height in meters use ii= 3 +  exp(3.970 97 -
3.907 04 d 7o.415  8g),  where d3  is diameter measured in centimetres at
a height of 3.0 m above the ground.
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TABLE 1. Distribution of bald cypress sample trees by height and diameter at 10 ft

Total height (ft)
dlo Total

(in.) 45 50 55 60 65 70 75 80 8 5 90 95 100 trees

4 2 2
5 3 1 2 1 7
6 1 4 3 2 1 11
7 2 3 1 1 1 8
8 2 1 4 1 4 1 2
9 1 1 2 1 1 6

1 0 5 1 3 3 1 13
11 1 2 2 1 1 1 8
1 2 2 7 5 2 1 17
13 1 2 2 1 2 8
1 4 1 1 3 1 3 1 1 0
15 5 5 1 4 1 1 6
1 6 2 2 1 1 3 9
1 7 1 1 1 2 2 2 9
18 4 2 3 9
1 9 1 2 1 1 5
20 1 2 1 4
2 1 2 2
2 3 1 1

Total
trees 3 7 8 8 13 1 8 28 1 7 20 15 1 4 6 157
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This equation explained 64% (FI = 0.64) of the variation in
observed height values, the root mean square error was 8.10 ft
(2.47 m), Bartlett’s test indicated homogeneous variance
(X2 = 0.15, P = 0.93),  and the Kolmogorov test indicated nor-
mally distributed residuals (D = 0.097, P = 0.09). Weighted
regression was deemed unnecessary based on the results of
Bartlett’s test and the Kolmogorov test. Equation 2 with its
corresponding mean and individual prediction confidence
bands is plotted in Fig. 3.

Height - diameter - basal area equation
To improve height predictions and to adjust for differences

between stands, foresters have used additional independent
variables such as age (Curtis 1967), site index, and basal area
(Larsen and Hann 1987; Wang and Hann 1988) in their

, height-diameter equations. Equation 1 modified by adding
basal area as an additional independent variable becomes

[3] H = C + exp&  + pldcpz + PsBA) + E
,

No site index work has been done with bald cypress because
it is difficult to determine tree age. The species has a habit of
forming false rings. Hence I used stand basal area around the
tree as a second independent variable. Fitting eq. 3 to the data
using nonlinear least squares, the following function resulted2:

[4] i? = 10 + exp(5.45460 - 2.95441 d$.30497

+ 0.001007 0 BA)

This equation explained 70% (FI = 0.70) of the variation in
observed height values, the root mean square error was 7.42 ft

2For  height in meters use k = 3 + exp(4.266 50 -
3 925 84 d~0.304v7 + 0.004 385 9 BA), where BA is measured in

‘2m /ha.

(2.26 m) (a reduction of 8.4% over eq. 2),  Bartlett’s test indi-
cated homogeneous variance (X2 = 0.52, P = 0.77),  and the
Kolmogorov test indicated normally distributed residuals (D =
0.046, P > 0.15). Again, weighted regression was deemed
unnecessary based on the results of Bartlett’s test and the
Kolmogorov test. Equation 4 is plotted in Fig. 4.

Application and reliability
Knowing the prediction interval is as important as being

able to predict the height given dta  or dia and BA. The con-
struction of simple and joint confidence intervals about non-
linear regressions is analogous to that of linear regressions,
using a matrix algebra approach. Two quantities are needed
to construct the bounds on the predictions: (i) the standard
errors of the predictions (se) and (ii) a t- or W-value, for
simple or joint confidence intervals, respectively. The interval
boundary points are obtained from

[5] iii + se(t or W)

where W = dpF( 1 - a; p, n - p) is the Working-Hotelling
value for confidence bands, p is number of parameters (3
or 4), F represents the F-statistic, and 12 is number of obser-
vations (157). If the user is interested in assessing limits for
a single point on eqs. 2 or 4 then a confidence interval about
that point is appropriate. If, however, as is more often the
case, the user is interested in assessing limits about multiple
points on eqs. 2 or 4, then joint confidence intervals (vari-
ously known as a confidence band, confidence region, or
simultaneous confidence limits) are appropriate (Draper and
Smith 1981; Neter et  al. 1985).
Leverage and standard errors

To calculate standard errors we must first compute a value
known as the leverage. Let Fn represent either eqs. 2 or 4.
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The regression design matrix k (157 x p) is formed by differ-
entiating Fn with respect to the p’s,  that is, X = aFn/@. For
the ith  observation, a scalar known as the leverage is com-
puted as follows:

[6]  Zi = Xi(X’X)-‘X(

where Xi  is the ith  row vector of X. There are three types-of
standard errors: (i) for the predicted mean value of Hi,  s(HJ;
(ii) for a predicted value of an indtiidual  (new) outcome
drawn from the distribution of Hi, s(Hi(new));  ancjJiiz) for the
predicted mean of m new observations on Hi, s(Hi(new)).  They
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,

are calculated as

[7U] S(iii)  = $7

[7bl &(new) )=$x7

[7Cl  s&new) 1 = l/x

where s2 is the mean square error of the regression.

Vectors, matrices, and mean square errors
The vector Xi  for eq. 2 has the form

.

(iii - 10 ) (fii  _ 1())d;$41589 -2.65 144(~i  - 10)d ;~41589 ln(dmI( I4

The (X’X))’ matrix from eq. 2 is

0.007672833 -0.000931329 0.003170803
-0.000931329 0.000537888 -0.000320559
0.003170803 -0.000320559 0.001320 3371

The mean square error of eq. 2 is 65.650 77. With these three pieces of information bounds can be computed for the height
predictions from eq. 2.

The vector Xi  for eq. 4 has the form

(iii - 10) (j$  - 1())d;,$30497 -2.954 41 (pi - 10)di$304971n(dloJ (pi - lO)BAi]
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The (X’X)-’ matrix from eq. 4 is

! -0.015 0.005 0.026 2.326876 941067 604 549 365 8 1 13 x 1O-7 -2.662829 -0.015 -0.003 0.009 941067 866 331052 133 x 1O-7 -0.003 0.005 0.001 5.664 604 069 331052 188 263 8 8 13 x 1O-8 -2.6628290 5.664069 5.866488 2.326 876 4 8 1 x x x x 1O-7  1O-8  10-l’  1O-7  I

The mean square error of eq. 4 is 55.041 33. With these three pieces of information bounds can be computed for the height
predictions f;om  eq. 4.

Calcula t ions
The following examples serve to illustrate the use of eqs. 2

and 4 and the method of constructing confidence intervals.
Consider a tree with a diameter measured at 10 ft above the
ground of 15.4 in. Using eq. 2 the height is estimated as

fi = 10 + exp(5.15907 - 2.65144(15.4)-“.4’589)
d = 84.3 ft

Inserting the values 84.3 for fi and 15.4 for dlo into xi we
obtain

[74.344  38 23.843 51 -172.865 701

The leverage is calculated from eq. 6 and is 0.010 213. From
eq. 7 the standard errors are (using m = 5 in eq. 7c)

s(&)  = ‘/(0.010213)  (65.65077) = 0.818 84

S(fii(new))  = J(O.010  213) (65.65077) + 65.65077

= 8.143 79

S(lGi(“,wJ)  = -\1(0.010213)  (65.65077) + 65.65077/5

= 3.71492

The 95% t-value is 1.975. From eq. 5 the overall mean CI,
individual CI, and mean CI of five trees, respectively, are

84.3 f 0.81884(1.975)  = 82.7 I fi I 85.9

. 84.3 iz 8.14379(1.975)  = 68.2 5 i& I 100.4
,

d 84.3 + 3.71492(1.975)  = 77.0 5 icnewj  I 91.6

Suppose from a damage appraisal we have three trees with
d,o and surrounding BA values of 12.6 in. and 200 ft2/acre,
16.2 in. and 160 ft2/acre, and 20.1 in. and 130 ft2/acre. Using
eq. 4 heights are estimated as

fil = 10 + exp(5.454 60 - 2.95441 (12.6)-“.3M97

+ 0.001007 O(200)) = 83.1 ft

k2 = 10 + exp(5.454 60 - 2.95441(16.2)-“.3”97

+ 0.001007 O(160)) = 87.6 ft

fi3 = 10 + exp(5.45460 - 2.95441(20.1)-“.30497

+ 0.001007 O(130)) = 91.6 ft

Inserting the appropriate values into Xi, for i = 1 to 3, and
stacking the three row vectors into a matrix, we obtain

[ 77.643 73.095 81.644 01 94 38 33.207 32.695 33.752 64 93 69 -289.858 -273.236 -252.658 99 04 99 12 10 14 423.030 613.768 619.00141 77 59 1
By using this matrix in eq. 6 instead of the individual vectors
Xi, a leverage matrix is calculated whose diagonal elements
are the leverage values. This averts the need for repetitive
calculation of eq. 6 for each observation. The leverage matrix
is

0.021266 0.011298 -0.000 536

1 = [ 0.011298 0.014484 0.018 387 1matrix

-0.000 536 0.018 387 0.042 754

The individual leverage values are as follows: 1, = 0.021 266;
12 = 0.014 484; 13 = 0.042 754. From eq. 7b, the standard
errors for each individual prediction are

~(fi,~~~~~)  = d(O.021266)  (55.041 13) + 55.041 13

= 7.49744

~(fi~~~&  = $0.014484) (55.041 13) + 55.041 13

= 7.47251

~(fi~(“~~))  = d(O.042754)  (55.041 13) + 55.041 13

= 7.575 91

For 90% joint confidence intervals about these three predic-
tions, the W-value is 44F(0.90;4,153)  = m = 2.816.
Using eq. 5 the joint confidence intervals are

83.1 Z!I 7.49744(2.816) = 62.0 5 i&) I 104.2

87.6 + 7.472 51(2.816) = 66.6 5 fi2(new) I 108.6

91.6 AI 7.57591(2.816) = 70.3 I fi3c3(new) 5 112.9

Summary

Predicting height directly from diameter is useful in many
situations. Resource professionals should bear in mind that
regression functions like eqs. 2 and 4 provide point estimates
that have a variance. When evaluating a large group of trees
with the same dlo or dlo,and  surrounding BA, constructing
a confidence interval on Hi  will provide a range of values that
should contain the true mean of that group. When svaluating
one tree, constructing a confidence interval on Hi(,,,)  will
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provide a range of values that should contain the true height
of the individual. When evaluating a few trees with the same
dta  or dte  and surrounding BA, constructing a confidence
interval on Eric,,,) will provide a range of values that should
contain the true mean of this small group. If, however, as is
more often the case, one is interested in evaluating a number
of observations across a range of d10 or dtu  and surrounding
BA values, then joint confidence intervals are necessary.
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